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Introduction

The use of satellite imaging to remotely detect areas of high risk for transmission of

infectious disease is an appealing prospect for large-scale monitoring of these diseases.

The detection of large-scale environmental determinants of disease risk, often called

landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade

et al. 1988). The basic notion is that large-scale factors such as population density, air

temperature, hydrological conditions, soil type, and vegetation can determine in a coarse

fashion the local conditions contributing to disease vector abundance and human contact

with disease agents. These large-scale factors can often be remotely detected by sensors

or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive

model to mark high risk areas of transmission and to target control or monitoring efforts.

A review of satellite technologies for this purpose was recently presented by Washino

and Wood (1994) and Hay (1997) and Hay et al. (1997).



In China,there is currently concern about the establishment and spread of infectious

diseases, including malaria and schistosomiasis, in the area along the Yangtze upstream

of the Three Gorges Dam which is now under construction. Our group has been working

with parasitologists from the Sichuan Institute of Parasitic Disease (SIPD) responsible for

schistosomiasis monitoring and control in the area of the dam. The profound ecological

and social changes that will take place as the dam is being constructed and when it is

completed may create new habitat for the snail species central to the cycling of the

disease, as well as new relationships between humans, domestic animals and the aquatic

environment. The size of the lake that will be created behind the dam and the difficulty

of access to this mountainous area make remote sensing technology an attractive adjunct

to land based surveillance of these changes as the lake fills and the dam goes into

operation.

As a means of exploring the use of remote sensing in the context of schistosomiasis

control prior to the completion of the Three Gorges Dam, we have been studying a

region where the disease is endemic, where ground based data sets on its prevalence and

on snail habitat exist, and which is of a scale suitable for study using remote sensing.

With the assistance of our colleagues in the SIPD, we have focused on the area along the

Arming River in the Daliang mountainous area of southwestem Sichuan province. This

region includes villages studied in our earlier work.

Remote sensing has been demonstrated to be a viable means of identifying habitat for

vectors of other diseases. The potential efficacy for using remote sensing to determine

high-risk areas of malaria transmission was recently illustrated (Beck et al. 1994; 1997).

Two types of Anopheline mosquito habitat, unmanaged pastures and transitional swamps,

were shown to be detectable based on classification of Landsat Thematic Mapper (TM)

data. That research was an extension of previous work which focused on the

identification of high and low Anopheline-producing rice fields (Wood et al. 1991).

Landsat TM data have also been used to map land cover to study landscape correlates of

Lyme disease (Dister et al. 1993). In that study disease data and landscape classifications
were overlaid to look for land cover correlates to disease risk.

Several studies have implied that remote sensing could be a useful tool for

schistosomiasis monitoring. Cross and Bailey (1984) and Cross et al. (1984) showed a

correlation between local temperature variation and prevalence rate. Malone et al.(1994)

showed that historical prevalence data correlated well with remotely detectable

geographic features. Both of these studies take a different approach from the Anopheline

studies in that they demonstrated a correlation between disease and ecological factors,

whereas the malaria vector studies by Beck et al. (1994; 1997) and Wood et al. (1991),

remotely sense habitat correlates of the vector known to be the disease agent.

In the current study we ask if the second approach is applicable to detecting spatial

variations in the vector population which transmits the parasite causing schistosomiasis

japonicum, the Asian form of schistosomiasis. The disease is vectored by an amphibious

snail, Oncomelania hupensis. A recent preliminary study by the SIPD used Advanced



Very High ResolutionRadiometer(AVHRR) datato identifysnailhabitat(Li et al.
1990). In thecurrentanalysisweusehigherresolutionLandsatTM datato look for
correlationswith detailedgroundbasedsnailecologysurveys.If surveyedsnailhabitats
correlatewith thesatellitedata,thereis thepotentialto useremotesensingto monitor
largeandremoteareasin theregionof thedam,andto identifyareasathigh risk of
transmission.

Thecurrentproblemisdifferentfrom thatof detectingmalariavectorssincethevector
habitatfor O. hupensis is usually a micro-environment which is itself not detectable using

most remote sensing data because of their course spatial resolution. However, micro-

environmental conditions may be affected by larger scale factors including local

vegetation type and surrounding crops, fertilizer usage, and water and temperature

patterns. These factors will cause local changes in the environment, which in turn will

influence the remote sensing signal. Further, the other two schistosomiasis studies found

correlations between large-scale phenomena and disease rates implying that something

can be seen at this scale. The question addressed at present is whether or not remote

sensing data of local areas can be accurately classified, based on large-scale

environmental factors, as being suitable for these vector snails or not, and thus be at high
risk for transmission.

Methods

To address this issue our group conducted a study in the Anning River Valley in

southwestern Sichuan Province. The Anning River Valley is a high mountain valley at an

elevation of about 1500 meters. This is primarily an agricultural area with irrigated

farming of rice, corn, wheat, and a variety of vegetables and some export crops. The

valley is also a highly endemic area for schistosomiasis japonica. The remote sensing

data used was from the Landsat TM sensor. The ground data indicating suitable snail

habitat were point observations from one environment type and classified as habitat or

non-habitat. Suitability was determined by the presence of young or reproducing snails

vs. no young or reproducing snails. Few locations are found with only adult snails

present, presumably because snails leave unsuitable locations or die.

A large-scale snail monitoring effort was conducted in 1994 by the Xichang County Anti-

endemic Station (XCAS). The station is responsible for monitoring and controlling

human schistosomiasis infection and vector snail ecology in the seventeen-township

middle section of the Anning River Valley. Snail surveys were performed throughout the

area in townships where the human incidence exceeded 10%. Snail surveillance was

done in June. We chose this section of the river valley as our study area in order to take

advantage of this existing surveillance data. The study area extends from Lizhou

township in the north to Hexi township in the south, and covers about 45 km of the river

valley around Xichang City. A map of the area showing these reference points is shown

in Figure 1.
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Figure 1: Map of the Arming River Valley Study Area. Non-habitat sites are

shown as gray pixels. Snail habitat sites are shown in black pixels.



Two Landsat TM scenes (one Spring April 7, 1994, and one Fall October 16, 1994) were

obtained for the region. Both images were free of cloud cover over the area of interest,

and each represents a distinct agricultural season. The major crops during these times are

rice and corn in summer-fall and wheat and beans in the winter-spring season.

Ground data on the locations of snail colonies was obtained from the XCAS's 1994 snail

surveys (this is being supplemented with density information). During 10 days in the

middle of June, 1997, our group with the help of the local authorities and the head of the

XCAS visited townships and recorded the geographic locations of the 1994 surveillance

data. Collection sites were located with a Trimble Pro XL global positioning system to

allow for correlation with the remote sensing data. Three base stations were established

and positioned with respect to a known surveyed control point at the peak of the Lushan

mountain south east of Xichang city. All data points were differentially corrected to the

base station locations to provide positioning accuracy in the 1-5 mrange.

Collection sites were located in 14 townships throughout the study area. Townships were

chosen based on availability of 1994 data or if there was historical knowledge of

apparently stable snail habitat or non-habitat. Three environment types exist in the study

area: irrigated farming in the river plain, terraced rice culture at the base of the hills, and

mountain streams areas higher in the mountains. The three habitat types are structurally

different with distinct local ecologies. In light of this, the study was limited to one type

of environment, irrigated farming areas in the river plain, for which there was an

abundance of ground/field data (and travel was more convenient). Snail habitat in the

river plain area is limited to irrigation and drainage ditches and the boundaries of fields.

This resulted in a total of 103 data points (55 classified as habitat and 48 as non-habitat).

Image processing was performed using PCIWORKS image processing software. Before

data analysis, the images were geometrically corrected and registered using 11 ground

control points taken throughout the river valley. Points used for referencing the image to

a world coordinate system were large structures easily seen on the image, such as the

comers of the Xichang airport runway, large intersections and an isolated paved village

compound. The 103 ground/field data points were located on the image. Each snail

habitat and non-habitat site was specified as a 3 x 3 pixel area surrounding the site

location as determined in the field by GPS measurements.

After geographic correction, a preliminary supervised maximum likelihood classification

was performed using all TM channels from both dates. The 55 habitat and 48 non-habitat

areas were used both to train the classification algorithm and assess the accuracy of the

classification. The results of this accuracy assessment are presented in the next section.

Realizing that the accuracy of our preliminary classification was inadequate, we next

employed a two-tiered analysis approach. The first step of this approach employed an

unsupervised classification method called Isodata clustering to break up snail habitat and

non-habitat classes into subclasses. The Isodata algorithm is an iterative process whereby

the pixels of the image are grouped into clusters based on an examination of their



multispectralbrightnessvalues. Pixelsgroupedinto thesameclusteraresimilarwith
respectto their spectralproperties.TheIsodataalgorithmwasfirst appliedto thosepixels
correspondingto snailhabitatsites. Thealgorithmwasusedto split thepixels into 5
separateclusters.These5 snailhabitatclustersmaycorrespondto differentmicro-
habitatswhich areall suitablefor snails. TheIsodataalgorithmwas thenrunusingthe
non-habitatsitesto produce5non-habitatclusters.Thespectraldistributionsfor eachof
these10clustersweredeterminedandusedto performthesecondpart(i.e., supervised
maximumlikelihood classification)of this two-tieredanalysis.

Results

The result of the preliminary supervised classification using all TM bands from the spring

and fall images is presented in Table 1. For the 55 snail habitat sites, there was good

classification accuracy, with 89.3% of the pixels being classified correctly. However, for

the non-habitat sites there was a large number ofmisclassified pixels, with only 52.3% of

the pixels being accurately classified as non-habitat. 3.4% of the pixels corresponding to

snail habitat sites and 8.8% of the pixels corresponding to non-habitat sites were
unclassified.

The result of the two-tiered classification is presented in Table 2. For the pixels

corresponding to 55 snail habitat sites, 3.6% were unclassified. Of the remaining 96.4%,

90.3% of the pixels were correctly classified as snail habitat. For the pixels

corresponding to 48 non-habitat sites, 4.2% were unclassified. Of the remaining 95.8%,

86.6% of the pixels were correctly classified as non-habitat. A classification matrix

showing the percentages of each cluster for both types of habitat is presented in Table 3.

The resulting classification for the Anning Valley is shown in Figure 2. A 5 x 5 pixel

mode filter was applied to the image for presentation. The mode filter is primarily used

to clean up thematic maps for presentation purposes by it grouping together areas that are

predominantly snail habitat or non-habitat. In particular, for each 5 x 5 pixel area, the

predominant class is assigned to all pixels in the area.



Figure 2: Three panels showing (from left) (a) Landsat TM of Anning river

valley, (b) cIassification of habitat using [sodata and maximum

likelihood algorithms, and (c) enlargement of valley floor showing

mixed habitat.



Table 1: Results of Preliminary Maximum Likelihood Classification of

Snail habitat and Non-habitat Sites.

48 Non-

habitat Sites

55 Snail

habitat Sites

Total

#

Pixels

432

495

r,

% % %

Uncl. Classified as Classified as

Pixels Snail habitat Non-habitat

8.8 38.9 52.3

3.4 89.3 7.3

Table 2: Results of Two-tiered analysis using Isodata and Maximum

Likelihood Classification algorithms.

Total
#

Pixels

48 Non- 432
habitat Sites

55 Snail 495

habitat Sites

% % %

Uncl. Classified Classified

Pixels within Snail within Non-

habitat Clusters habitat Clusters

4.2 12.6 83

3.6 87.1 9.2

Table 3: Percentage ofpixels classified by cluster for snail habitat and non-

habitat sites.

48 Non-

habitat Sites

55 Snail

habitat Sites

Total %

# Uncl.

Pixels Pixels

432 4.2

495 3.6

Snail habitat Clusters Non-habitat Clusters

% % % % % % % %

cl c2 c3 c4 c5 c6 c7 c8

6.9 3.7 0,2 1.6 0.2 28.9 9.0 18.3

31.3 23.6 8.5 17.6 6.1 4.8 0.0 4.0

%

c9

11.8

0.0

%

cl0

15.0

0.4



Discussion

Despite the fact that we limited our analysis to only those sites that were in the irrigated

farming areas located in the river plain, there was a great deal of variability within the

snail habitat and non-habitat sites. This was observed visually in the field as well as in

the distributions of the spectral data. Our preliminary classifications ignored this

variability by lumping all of the habitat sites together and all of the non-habitat sites

together to train the classification. As a result the snail habitat class included many of the

non-snail sites, while the non-habitat class did not classify enough of the non-snail sites.

This poor classification may be due to the existence of multiple micro-

environments/habitats within the irrigated farming environment which each have distinct

spectral properties. Hence, the terms "snail habitat" and "non-habitat" encompass

distinctly different micro-environments which support, or do not support snails,

respectively. Therefore, when either snail habitat or non-habitat is considered as a whole,

it appears to be quite variable.

In the two-tiered approach, we solved the problem of multiple micro-environments by

using the Isodata algorithm to effectively separate the highly variable habitats into

"relatively pure", less variable clusters before performing supervised classification. This

was not based on field observation, but rather, the spectral data was used to create these

clusters. The choice to create five habitat clusters, and five non-habitat clusters is not

explained in detail, because these numbers were chosen somewhat arbitrarily. However,

the high classification accuracy indicates that such numbers are not unreasonable. It will

not be hard to fine-tune the number of clusters by looking at the variability and

separability between signatures.

In addition to refining the number of clusters, we are also working on reducing the

number of bands used to only those that add information to the classification. Once we

have reduced the classification down to the key bands, we hope to develop an

understanding of what the clusters correspond to in the field.

Future Work

Validation Study

In our current work we assessed the accuracy of the classification only at the locations of

the training sites. This may have resulted in artificially high accuracies. This summer we

plan to revisit the Anning River valley to validate our two-tiered analysis with a rigorous

field study. We intend to obtain spring and fall Landsat TM images from a more recent

year than 1994 to repeat the two-tiered classification. This more recent classification

would be validated in the field. In the past, however, we have had problems obtaining

clear images for this region. If more recent images are not available, we will perform our
validation based on our current classification of 1994 data.

Field sites will be chosen by randomly sampling single pixel locations within the

classified image. The sampling will be stratified across image classes. (Recall in the



preliminaryanalysisthat5 imageclasseseachwerestatisticallyattributableto snailand
non-snailsites.) Eachsampledpixelcorrespondsto geographicalcoordinatesof a site
wherefield datawill becollected.Balancingsamplesizeconsiderationswith the
practicalimplicationsof navigatingin rice fieldsusingGPS,approximately100siteswill
bevisited (50 for snailhabitatand50for non-habitat).At eachsite,asnailsurveywill be
conductedin thesurrounding30m × 30m areaaccordingto thestandardizedsampling
protocolemployedin Sichuan.Thesnailsurveydatawill beusedto assesstheaccuracy
of theclassificationmapfor overallmisclassification,misclassificationby class,and
misclassificationby site.

Thework describedthusfar isusefulin validatingthemodelat the levelof individual
pixels. In manycasesit is moreusefulto validateclassificationsat amuchlargerscale.
Our eventualgoal is to extendthiswork to monitoringpotentialsnailhabitatformation
throughouttheThreeGorgesDamarea.This isa muchlargerareawherepolicy makers
assigningresourcesfor Controlandresearchwouldrequireknowledgeof thedegreeto
whichvillagesandtownshipshavesnailhabitat. With this inmind,oursecondgoal is to
validateourclassificationatdifferentregionallevels. Sinceat a largerscaleit is difficult
to carryout field studies,wewill rely on theknowledgefromanti-endemicmonitoring
stationswhichroutinelymonitorsnailswith coarsesurveysaroundvillagesof high
endemicity. We proposeto acquireaerialphotographsof theAnningRivervalley. With
theassistanceof theregionalanti-endemicagency,areasonthephotographswill be
mappedoutwhich correspondto snailhabitatandnon-habitat.Estimateswill bemadeon
theamountof snailhabitatwithin eacharea.Theseareaswill becomparedwith
correspondingareasin theLandsatclassificationmap,andasimilarity statisticwill be
computed.This statisticwill notweighheavilyonindividualpixel misclassifications,but
will indicatewhetheror not themajorityof theregionis classifiedsimilarly by both
methods.

Classification Using Remote Sensing Data and Supplemental Ecological Data

Once we have verified our classification approach we intend to study the degree to which

additional ground data might improve the classification accuracy. According to SIPD

(1995), the ecological correlates of O. hupensis snail habitat in Sichuan include the

existence of certain vegetation types, size and density of irrigation ditches, proximity of

agricultural field edges, wet lowland areas, and soil moisture, type and quality, and local

temperature. Some of this information, such as soil type is readily available at a coarse

scale across the Arming valley. Other kinds of information such as vegetation type and

coverage will be collected during the randomized validation study. Local temperature

variation is difficult to measure because of the size of the area. However, mean local

temperature at several points throughout the valley should be available.

The aforementioned ground data is measured on several different scales, and with varying

reliabilities. For example soil type is a nominal variable and percent vegetation coverage,

a bounded, interval variable. Because traditional remote sensing image analysis

algorithms such as the maximum likelihood classifier and minimum distance classifier



cannotbeusedto processnominalandordinaldata,wewill analyzethis additional
grounddatausingseveralnon-traditionaltechniques:CART (Breimanet al. 1984),logit
regression(Chunget al. 1991),evidentialreasoning(Wangetal. 1994;Gong1996)and
artificial neuralalgorithms(Gong1996).Eachof thesealgorithmscanhandleall the
differentlevelsof measurementsandhaveprovenusefulin classificationtaskswhere
similar issuesexisted. In particular,whenmapping4 geologicaltypesinNorthern
CanadausingLandsatTM data,gravityanomaly,Potassiumradiometricand
aeromagneticdata,Gong(1996)obtainedhigh classificationaccuraciesusingevidential
reasoningandneuralnetworks.Thedatain thatstudyhaddifferent spatialqualities,and
all thedataotherthantheremotesensingdataareessentiallypoint-basedsampledata.
They had to be resampled through spatial interpolation in order for use with the Landsat

TM data. When mapping 29 ecological classes iri Alberta, Canada using forest species,

crown closure and size and digital elevation data, (Gong 1996) assessed the potential of

neural networks. Forest species data is of nominal measurement scale. The experience

gained in these other studies will prove useful in this proposed analysis.

Developing an ecological interpretation of the classification algorithms is central to being

able to extrapolate the use of the algorithm to different areas. From the perspective of the

RS information, the key will be to develop a physically based interpretation of the

classification data for identifying the underlying ecological factors being sensed. In order

to accomplish this, we will address several potential problems. One problem is that the

remote sensing data come from different areas, each subject to different surface properties

and atmospheric irradiance. Since we will select images from clear sky conditions, we

will employ a simple atmospheric correction algorithm developed for correcting the

molecular and aerosol effects that dominate the clear sky condition (Forster 1984; Liang

et al. 1997). Because the snail habitat areas used in this study are located in relatively fiat

areas, the effect of illumination variation and shadowing can be safely ignored. Another

potential problem is that the spectral signal of a pixel in each band carries spectral

contributions from various surface cover types within approximately a pixel. We will use

multivariate piecewise regression algorithms to investigate the relationship between

various surface cover conditions combined with the modification by surface topography

and the spectral values from various snail habitat and non-snail habitat sample areas.

Statistical regression algorithms will be useful in revealing the dominant factors that

cause the spectral differences between snail habitat and non-habitat areas. The results

from such quantitative studies will help verify and improve our understanding of the

ecological conditions for the habitat of different snail subspecies. Furthermore, the

analysis results will help us in developing snail habitat indicators based primarily on

spectral properties and the derivatives such as landscape features obtained from remotely
sensed data.

Other Image Sources and the Identification of Landscape Features Relating to Disease

The work described thus far has focused on locating snail habitat. There are locations

where snails exist, however, no disease transmission occurs. It is unclear why this is the

case. It is clear, however that on a local scale infection intensity and disease prevalence



arerelatedto therelationshipsbetweenpeople,animals,andsnails,astheymaybe
mediatedby landscapefeatures.These landscape features include crop type, the nature

and density of irrigation in villages, and the proximity and density of settlements. In

addition, topographical features such as slope and aspect determine the flow of water

channels, which in may influence the transmission of disease. Therefore, it is of

considerable interest to determine if topographical or landscape features that can be

determined remotely are correlates of transmission, for such information would further

inform remote surveillance programs for prioritizing locations within the Three Gorges

region for intensive ground investigation. To investigate these questions, higher

resolution images than those from Landsat TM would be necessary.

We propose to analyze the relationships between a variety of landscape features in areas

of known snail habitat with the level of disease prevalence using both ground and RS

data. Snail habitat and density will be predicted using data collected as part of the

vali&ition fieldwork described above. We intend to obtain prevalence data at

approximately 20 villages throughout the valley where data is available from the local

anti-endemic authority. Landscape features, such as crop type, the nature and density of

irrigation in villages, proximity and density of settlements, and topographic slope and

aspect will then be analyzed to investigate the relationship of these landscape features to
estimates of disease prevalence treated as a continuous variable.

After determining the degree to which different landscape and topographical features

relate to disease prevalence, we will then evaluate how remote sensing techniques can be

used to identify these features. Without using remote sensing, landscape features such as

the structure, location and density of human settlements, locations of roads and even

details of irrigation are obtainable in a variety of ways. For established areas, good maps

are usually available and these can be digitized. But for working on a regional scale,

map-based information is labor intensive to obtain and prone to errors at several stages

during digitization. In the new settlements within the Three Gorges area such

information will not be available for some time. Locations of settlements can be obtained

with a GPS in the same way that habitat sites are located, or they could be identified from

imagery. DetaiIed landscape information such as the proximity of field edges or density

of irrigation ditches is more difficult to obtain. Such data is problematic for this study

and its inclusion will depend upon the ease of obtaining the data.

As an example, ditch density estimates can be obtained in several ways. An estimate at a

village scale can be obtained from the anti-endemic authority during the field studies. A

more objective estimate could be obtained by digitizing maps from the local Irrigation

Bureau and spatially aggregating the information to add them to the analysis. The

average density of irrigation ditches of various widths could be calculated at spatial

aggregates comparable to the size of the 3 x 3 pixel (90 m x 90 m) aggregates used in the

original classification described above. Because of the labor involved in working with
detailed maps on this scale, this is the least attractive method.



Presentlytherearetwo types of satellite imagery that can be used for obtaining

topographical features: 10 m resolution SPOT HRV-PAN imagery and 6.25 m IRS-1D

imagery (resampled to 5 m). With these high resolution satellite data, we can obtain

topographic features through automatic processing of stereo pairs of these images

(images taken from different view angles of the same region). This is accomplished by

digital photogrammetry (Saleh et al. 1994). Digital photogrammetry is a promising tool

for mapping plain and valley bottom areas that are of interest to this study. Such

capability has been developed rapidly for 10-20 years and now is mature enough to

extract digital surface elevation from aerial photographs and satellite imagery. With

digital photogrammetry applied to high resolution stereo-imagery, one can extract both

the horizontal and vertical coordinates for any point in either stereo image producing a

highly accurate three-dimensional digital surface model (DSM). Our previous experience

with monitoring the change of hardwood rangeland in California indicates that better than

2-3 m accuracies in both the horizontal and vertical directions are possible with 1 m

resolution imagery (Lee 1997; Mostafa et al. 1997). From a DSM landscape features like

slope, aspect, and concaveness or convexity of areas are easily extracted. At Berkeley,

we have expertise in digital photogrammetry and the necessary professional software

packages for processing this data (e.g., virtuoZo from Jetway Inc., and OrthEngine from

PCI Inc.).

In the next couple of years, we will have available, not only improved spectral imaging

capabilities such as the MODIS with 36 spectral bands, but also improved spatial

resolution from commercial satellites, such as the approximate 1 m resolution capabilities

of Space Imaging and Earth Watch. Both improved spectral imaging and higher

resolution data will allow us to better identify landscape features. With 1-5 m resolution

satellite data, ditches of varying widths and types, edges of agricultural fields, coverage

of vegetation, surface roughness, land-cover and land-use patterns and the exact spread of

villages can all be extracted with improved accuracy. In particular, we will explore the

use of linear feature extraction algorithms and the gradient profile modeling algorithm

(Wang 1993). The gradient profile modeling algorithm has been used successfully in

drainage and road network extraction (Gong et al. 1997) with remote sensing imagery of

different spatial resolution varying from 1.6 m to 30 m.
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